Scientifictutor.org

Electron Orbitals Review Worksheet

The last electron of each element is in what type of orbital (s,p,d,f)?

Cl p Ba

 $\frac{Ag}{d}$

Np f

Give the electron configuration of the elements or ions below.

Na $1s^22s^22p^63s^1$

 $F 1s^2 2s^2 2p^5$

Se $1s^22s^22p^63s^23p^6s^23d^{10}4p^5$

 P^{3-} 1s²2s²2p⁶3s²3p⁶

 Li^+ $1s^2$

Give the abbreviated electron configuration of the elements or ions below.

K [Ar]4s¹

Te $[Kr]5s^24d^{10}5p^4$

La $[Xe]6s^24f^1$

Ca²⁺ [Ar]

What happens when a photon of light strikes an electron?

The photon cause the electron to move to a higher energy level if the photon has enough energy.

What happens when an electron moves from a higher electron shell to a lower electron shell?

The electron releases the energy of its movement as a photon that moves away from the electron.

raw the electron diagrams (on a separate piece of paper) of the elements or ions below.

Be Si Ca²⁺ S²⁻

ANSWERS TO THESE FOUR WILL BE IN A SEPERATE LINK BACK ON THE WORKSHEET PAGE.

Give the four quantum numbers (n, L, m_L, m_s) of the last electron of the elements below.

He	В	Zn	U
n = 1	n = 2	n = 3	n = 5
$\Gamma = 0$	L = 1	L=2	L = 4
m = 0	m = -1	m = 2	m = -3
m = +1/2	m = -1/2	m = +1/2	m = -1/2

USE THE CONSTANTS (speed of light = $c = 3.0 * 10^8$ m/s and Plank's constant = $h = 6.626 * 10^{-34}$ m²kg/s) WHEN NEEDED IN THE EQUATIONS BELOW.

If the wavelength of a light wave is $3.4 * 10^{-7}$ m, what is the frequency?

$$8.8 * 10^{14} Hz$$

If the frequency of a light wave is $7.2 * 10^9$ Hz, what is the wavelength?

$$4.2 * 10^{-2} m$$

If the energy of a light wave is $9.1 * 10^{-6}$ J, what is the frequency?

$$1.4 * 10^{28} Hz$$

If the wavelength of a light wave is $6.8 * 10^{-12}$ m, what is the energy?

$$2.9 * 10^{-14} J$$

For each situation below state whether it is more likely to be toward the RED end of the spectrum or the PURPLE end of the spectrum.

A long wavelength will be no the ____RED___ end of the spectrum.

A low frequency will be on the ____RED___ end of the spectrum.

A high energy wave will be on the ___PURPLE__ end of the spectrum.